A covariance extension approach to identification of time series

نویسندگان

  • Jorge Mari
  • Anders Dahlén
  • Anders Lindquist
چکیده

In this paper we consider a three-step procedure for identification of time series, based on covariance extension and model reduction, and we present a complete analysis of its statistical convergence properties. A partial covariance sequence is estimated from statistical data. Then a high-order maximum-entropy model is determined, which is finally approximated by a lower-order model by stochastically balanced model reduction. Such procedures have been studied before, in various combinations, but an overall convergence analysis comprising all three steps has been lacking. Supposing the data is generated from a true finitedimensional system which is minimum phase, it is shown that the transfer function of the estimated system tends in H∞ to the true transfer function as the data length tends to infinity, if the covariance extension and the model reduction is done properly. The proposed identification procedure, and some variations of it, are evaluated by simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying dynamic systems with polynomial nonlinearities in the errors-in-variables context

Many practical applications including speech and audio processing, signal processing, system identification, econometrics and time series analysis involve the problem of reconstructing a dynamic system model from data observed with noise in all variables. We consider an important class of dynamic single-input single-output nonlinear systems where the system model is polynomial in observations b...

متن کامل

Discriminant Analysis for ARMA Models Based on Divergency Criterion: A Frequency Domain Approach

The extension of classical analysis to time series data is the basic problem faced in many fields, such as engineering, economic and medicine. The main objective of discriminant time series analysis is to examine how far it is possible to distinguish between various groups. There are two situations to be considered in the linear time series models. Firstly when the main discriminatory informati...

متن کامل

Variance/Covariance extension for time series discrimination

For time series discrimination,the main idea behind the proposed approach is to use a variance/covariance criterion to strengthen or weaken aligned observations according to their contribution to the variability within and between classes. To this end, the classical variance/covariance expression is extended to a set of time series, as well as to a partition of time series.

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

Development of New Modified Simple Polymerase Chain Reaction and Real-time Polymerase Chain Reaction for the Identification of Iranian Brucella abortus Strains

Brucellosis is primarily a worldwide zoonotic disease caused by Brucella species. The genus Brucella contains highly infectious species that are classified as biological threat agents. In this regard, the identification of Brucella can be a time-consuming and labor-intensive process posing a real risk of laboratory-acquired infection to the laboratory staff. This stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2000